Frequent Subgraph Mining Based on Pregel
نویسندگان
چکیده
منابع مشابه
Frequent Subgraph Mining Based on Pregel
Graph is an increasingly popular way to model complex data, and the size of single graphs is growing toward massive. Nonetheless, executing graph algorithms efficiently and at scale is surprisingly challenging. As a consequence, distributed programming frameworks have emerged to empower large graph processing. Pregel, as a popular computational model for processing billion-vertex graphs, has be...
متن کاملVisCFSM: Visual, Constraint-Based, Frequent Subgraph Mining
Graphs long have been valued as a pictorial way of representing relationships between entities. Contemporary applications use graphs to model social networks, protein interactions, chemical structures, and a variety of other systems. In many cases, it is useful to detect patterns within graphs. For example, one could be interested in identifying frequently occurring subgraphs, which is known as...
متن کاملFrequent subgraph mining algorithms on weighted graphs
This thesis describes research work undertaken in the field of graph-based knowledge discovery (or graph mining). The objective of the research is to investigate the benefits that the concept of weighted frequent subgraph mining can offer in the context of the graph model based classification. Weighted subgraphs are graphs where some of the vertexes/edges are considered to be more significant t...
متن کاملOn Speeding up Frequent Approximate Subgraph Mining
Frequent approximate subgraph (FAS) mining has become an interesting task with wide applications in several domains of science. Most of the previous studies have been focused on reducing the search space or the number of canonical form (CF) tests. CF-tests are commonly used for duplicate detection; however, these tests affect the efficiency of mining process because they have high computational...
متن کاملDetection of Related Semantic Datasets Based on Frequent Subgraph Mining
We describe an approach to find similarities between RDF datasets, which may be applicable to tasks such as link discovery, dataset summarization or dataset understanding. Our approach builds on the assumption that similar datasets should have a similar structure and include semantically similar resources and relationships. It is based on the combination of Frequent Subgraph Mining (FSM) techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Computer Journal
سال: 2016
ISSN: 0010-4620,1460-2067
DOI: 10.1093/comjnl/bxv118